SANDIA REPORT

SAND2009-5515
Unlimited Release
Printed September 2009

Investigating Methods of Supporting
Dynamically Linked Executables on High
Performance Computing Platforms

James H. Laros Il

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering:  http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2009-5515
Unlimited Release
Printed September 2009

Investigating Methods of Supporting Dynamically
Linked Executables on High Performance
Computing Platforms

James H. Laros Il Suzanne M. Kelly
1422 Scalable Computer Architectures 1423 Scalable Systems Software
Sandia National Laboratories Sandia National Laboratories
P.O. Box 5800 P.O. Box 5800
Albuquerque, NM 87185-1319 Albuquerque, NM 87185-1319
jhlaros@sandia.gov smkelly@sandia.gov
Michael J. Levenhagen Kevin Pedretti
1423 Scalable Systems Software 1423 Scalable Systems Software
Sandia National Laboratories Sandia National Laboratories
P.O. Box 5800 P.O. Box 5800
Albuquerque, NM 87185-1319 Albuquergque, NM 87185-1319
mjleven@sandia.gov ktpedre@sandia.gov
Abstract

Shared libraries have become ubiquitous and are used to achieveegmate efficiencies
on many platforms. The same properties that enable efficiencies on tinedsitamputers and
convenience on small clusters prove to be great obstacles to scalabilitygerclasters and
High Performance Computing platforms. In addition, Light Weight operatystesns such as
Catamount[9] have historically not supported the use of shared librgréesfisally because
they hinder scalability. In this report we will outline the methods of supportirrgex libraries
on High Performance Computing platforms using Light Weight kernels thahvesstigated.
The considerations necessary to evaluate utility in this area are many antinsesneonflict-
ing. While our initial path forward has been determined based on this evaluai@onsider
this effort ongoing and remain prepared to re-evaluate any technologynipht provide a

scalable solution.



Acknowledgment

The authors of this report would like to recognize the sigatfit contributions of the author of both
Statifier and Ermine, Valery Reznic. Reznic spent significamiants of time not only responding
to questions concerning his tools but on general issueswsuling dynamically linked executables
and subtleties of Glibc and ELF. His assistance was invéduab



Contents

SUMMIATY . .ottt e e e e et e e et e e e e e e e e 6
NOMENCIATUIE . . . .ot e e e e e e e e e et et 7
L INtrOdUCHION . .ot e e e e 9
2 Levenhagen Method. ....... ... i 11
3 File-system Method . ... ... i e e 14
4 Statifler Method. . ... .o e 16
5 Ermine MethOd . . ... e e e e e 18
6 Future Light Weight Kernels . ... e 19
T CONCIUSION . ot e e 20
REIEIENCES . . o i e 22



Summary

This report is an evaluation of a range of possible methodsipporting dynamically linked ex-
ecutables on capability classligh Performance Computing platforms. Efforts are ongoind a
extensive testing at scale is necessary to evaluate pexfmen While performance is a critical
driving factor, supporting whatever method is used in a potidn environment is an equally im-
portant and challenging task.

1systems designed to support applications that use a samifi@ction of the total resource in support of a single
cooperating application.



Nomenclature

Archive - See Static Library

Dynamically Linked Executable - Executables that contain references to external funstmn
variables that are contained in shared libraries. The dhalogects referenced by the dy-
namically linked executable are mapped (linked into) if® éxecutables memory space at
run-time.

Dynamically Loaded Shared Object - Objects contained in shared libraries that are condition-
ally loaded, at runtime, into a dynamically linked execlggbmemory space using the
dlopen() API.

Library - A file built for the purpose of sharing code between appiwet. Libraries may be
static or shared.

Loader - See Runtime Linker

Runtime Linker - An interpreter that accomplishes loading of the dynarhidadked executable
and resolves external references to objects containecaneghibraries and maps them into
the executables memory space. Also Loader.

Shared Library - Libraries that contain objects that are linked into dynzatly linked executa-
bles at runtime. These objects are referenced by dynamiliaked executables at build
(link) time.

Static Library - Libraries that contain objects that are linked into sttclinked executables at
initial build or link time. Also called Archives.

Statically Linked Executable - A standalone or self-sufficient executable. An executalde
resolves externally referenced functions and or variafstes static libraries and includes
them into the final executable at build time (link time).






1 Introduction

In this report we discuss the results of evaluating the efjicd a number of different methods
of supporting dynamically linked executables on High Peniance Computing (HPC) platforms,
specifically those using a Light Weight Kernel (LWK) operatisystem. Catamount[9], and pre-
decessors, have historically only supported launchintcatly linked executables. This choice
was made largely for performance reasons. A staticallyelihnkxecutable can be launched on
12,960 nodes (38,400 cores) in 30 seconds. Efficienciesasittiese are critical to the success of
capability runtime systems.

While many of the terms we use in describing the methods etedlEre commonplace, they
have unfortunately been sufficiently obfuscated and requiarification on how they will be used
in this document. The terribrary is used to describe a method of sharing code (in the form of
objects) between disparate applications. The term libdags not indicate how the objects are
used. (Libraries can also be used to segregate portionsiafjke @pplication but this usage is
peripheral to our discussion.) Libraries can be built to beduasstatic (also called archives) or
shared. Objects in static libraries are included into the final exable at link time, producing
a stand-alone or self-sufficient final executals@t{c or statically linked executable). Only the
objects needed by the final executable (also called apjplican this document) are linked in
(included). The objects in shared libraries are refererfnetlincluded) by an application at link
time (dynamically linked). This reference, or note, indicates the application haspendency on
an object located in a specific shared library. It is impdrtamote this reference will be resolved
at run-time (the shared library containing the referendgéai will be located and verified to be
the correct version) by theuntime linker or loader and mapped into the application’s memory
space, but the shared object will not be loaded (into theiegtn’s memory space) until needed.
In contrast to statically linked executables, dynamiclfiked executables are not self-sufficient
since they depend on the presence of shared libraries. Hewdpendency is accommodated will
be one of the topics of our discussion.

There is an additional method of using objects containedhamesd libraries we discuss in this
report. Adynamically loaded shared object is an object contained in a shared library that is
externally referenced by a dynamically linked executaliei$ not resolved immediately at run-
time. These shared objects may or may not be used by the aj@icdepending on application
logic. Shared libraries requested in this way are accessad what we will refer to as thdl open()
API . This method of accessing shared objects complicates @adgiichallenging issue since each
node or core participating in an application may arbityatitom the perspective of the runtime
system) request an object from a shared library.

In the following sections we will discuss the methods eviddafocusing primarily on their
applicability to Catamount and future LWK’s.

e Levenhagen Method (Section 2)

¢ Filesystem Method (Section 3)

¢ Statifier Method (Section 4)



e Ermine Method (Section 5)

The following evaluation criteria were used where applieab

Scalability

Portability

Standards based

Production issues and Maintainability

How these criteria apply to each method will be discusse@revappropriate, and explained
within the context of that method. Standalone conclusioii$e included in each section describ-
ing a specific method. In Section 6 we will describe how a nunadbe¢he challenges specific to
Catamount have been mitigated by decisions made with ouerultlVK initiative. While many
obstacles have been removed many scalability challengesime Comparative conclusions will
be discussed in Section 7.

Definitions for specific terms are included in the Nomenckatection found in this report.

10



2 Levenhagen Method

Prior to this evaluation effort Michael Levenhagen develba prototype, based on Catamount
(specifically Catamount Virtual Node (CVN)), which was inteddto demonstrate a method of
supporting dynamically linked executables on an HPC ptatfRed Storm[5]). The resulting
prototype, coined the Levenhagen method in this report,ifieddhe Catamount yddoct* load
protocol in the following ways. The default behaviour of fbhad protocol upon executing yod
is to memory map the executable (statically linked exedataibthe default case) and fan-out the
executable to all participating nodes. (This protocol has@n to be very efficient and scalable.)
To support dynamically linked executables it is necessahaie or duplicate the functionality of
a runtime linker (loader). While a port of Glibc[3] is part bt standard Catamount tool-chain, the
Catamount specific Glibc is dated and is only built to suppi@tically linked executables. This
presents a problem since the Glibc loader is only built wh&baGs built to support dynamically
linked executables.

This effort included an evaluation of the level of effort atwed in building the Catamount
specific Glibc to support dynamically linked executablesisTevaluation was accomplished by
simply attempting this task. While significant progress waslein this direction, it was deter-
mined the level of effort required to produce a producticedseversion would, at a minimum, be
twice the original porting effort, which was approximatéfyee man months.

Since building the Catamount Glibc loader was determinedetanpractical, at this time,
and a loader, or the functionality of a loader, is necessathgr options had to be considered.
An acceptable alternative, from the embedded world, wasdan uClibc[8]. This open source
Glibc compatible library provides a very large percentaf@ldoc features in an extremely small
number of lines of code. Producing a loader, sufficient fotgtyping and testing based on uClibc
compatible with Catamount, proved to be a relatively simatkt

Using the uClibc loader the default load protocol was moditteperform the following tasks:
When yod is executed it analyzes the executable to deterrhihésistatically or dynamically
linked. If statically linked, it reverts to the default poabl. If the executable is dynamically
linked the load protocol maps both the uClibc loader and theadycally linked application into
memory on the launch node. Both the loader and the applicat®nistributed by fanout to each
participating node. In the default case, only the appliais distributed to participating nodes.

At this point, both the loader and the executable (applbicatare memory resident on each
node participating in the application. Each node begins@ti@n but instead of simply starting the
application, the loader executes the application with thed gf determining which shared libraries
are necessary. (Recall, externally referenced functiaeeaolved at link time, the shared libraries

2Yod is the command line parallel application launcher, mdrthe Catamount runtime system (similar to the
mpirun utility)

3pPct (Process Control Thread) is the managment thread theiunder the Catamount QK Kernel which manages
compute resources for applications running on Catamouié$o

4Yod/pct protocol refers to the communication protocol usetiveen yod and pct to, in this case, distribute appli-
cation binaries to nodes participating in a job

11



that fulfill these requests are referenced in the E&Fecutable (application). The loader interprets
these references and requests resolution of each sharag/jbEach node independently and
sequentially requests each required shared library. Amnagson is made that each executable
will require the same shared libraries in the same sequéiigis a valid assumption for load time
shared libraries (as opposed to shared libraries requasted the dlopen()[3] API). Each shared
library is efficiently fanned out using the standard yod/paitocol. Once all necessary shared
libraries are distributed to all participating nodes, tbhader does its work of symbol resolution
and relocation on each node. When this is complete the afiphcanters main(), on each node,
and execution continues as normal.

In evaluating this method, we found this approach provitiesstalability necessary for both
existing and near term platforms at a minimum. However,dswt unique to this method that
could potentially impact scalability remain. When an exabig (application) requires a shared li-
brary, efficiencies are obtained on time-shared multi-agstems by sharing shared libraries. That
is, in normal circumstances many applications executirgsimgle memory space will often use
the same shared libraries. Efficiency is gained by only omy ob each shared library occupying
memory space. In addition, only when an application reguame object from the shared library
is that object loaded into memory (more specifically posiaf a shared library are mapped in
units called segments and only loaded when the page of memapped to that location is ac-
cessed). This allows for dynamically linked executablesetmain small relative to a statically
linked executables and resource efficiencies resulting 8baring common libraries.

Unfortunately, the execution environment is quite différen capability class HPC platforms
(traditionally a space shared environment). Typicallyingle application executes on each node.
This precludes any efficiencies gained by resource shaeétvgden applications. In addition, nodes
typically have no locally accessible storage. If demandmgagere to be used, accesses would be
remote and likely very expensive. While the dynamically édlexecutable is likely to be smaller
than the equivalent statically linked executable, the abs®f demand paging capability requires
each externally referenced shared library be loaded, amitisety, into each nodes memory space.
The resultis the total memory burden for dynamically linkgglications will far exceed the equiv-
alent statically linked application. The Levenhagen météfficiently mitigates the challenge of
distributing shared libraries to participating nodes. Amportant achievement. It does not, how-
ever, address some of the other inherent implications gb@timg shared libraries on capability
class platforms (i.e. memory inefficiencies).

The use of uClibc was a sane choice for the initial prototy@nd testing effort but presents
portability and standards concerns. If this method of sujppgp dynamically linked executables,
specifically for Catamount, is chosen for production usehausd be recognized that uClibc does
not assume to support all Glibc functionality. It shouldoaltee assumed that with further testing
additional challenges related to Glibc support might beoentered. As with the Catamount spe-
cific Glibc port, any uClibc port would be very Catamount specifierefore not widely portable.
Additionally, choosing to use uClibc to provide the loadelyaddresses one of the requirements
of complete support for dynamically linked executables.a@atunt system libraries currently sup-
port only statically linked executables. One of the driviagtors to support dynamically linked

SELF (Executable and Linkable Format) common standard fofarabject code.

12



executables is the user community’s desire to not have liokexnd or re-compile when changes
are made to the Catamount system libraries. Providing sHemedy versions of these system
libraries could be challenging. The level of effort to busldared Catamount system libraries was
not estimated as part of this task.

The Levenhagen method, as designed, can provide limiteposufor the dlopen() API. If
the dynamically linked application uses the dlopen() AP&iconsistent manner, that is each ap-
plication follows the same logic path and requires the samaees! library in the same sequence,
the protocol described previously will satisfy dynamigdiaded shared library requests. A more
challenging aspect of supporting the dlopen() API is the/ verl possibility that not all partici-
pating nodes in the application will ask for the same shaitedry in the same sequence at the
same time or at all. The Levenhagen method does not addresgagsibility. Supporting un-
predictable dlopen() requests would be a challenge andreegjgnificant additional research and
development.

Finally, while certainly not specific to this method in padiiar, supporting any custom solution
in a production environment increases effort and requilgrsificant maintenance commitments.
Efficiencies could be gained by leveraging standards butauir@entionally imposed limitations
of the Catamount runtime system, support of standard tomilkatomponents is impractical at this
time.

13



3 File-system Method

This method of accessing shared libraries by dynamicailyell executables, at its basis, is the
standard method currently used on most platforms. For elampany cluster systems support
dynamically linked executables by providing access toesthlibraries on local disks (local to each
node), remotely mounted filesystems (like NFS), and evenr&ypppulating memory filesystems
with shared libraries. Unfortunately, each approach hlasrent limitations. It is well established
for capability class systems that the negative implicatiohlocal disk far outweigh any benefit
and therefore render this option impractical. Likewisepuviling access to remotely mounted
filesystems for the purpose of accessing shared librariegfficient. As mentioned in Section 2,
at runtime each reference to a shared library is resolvedreamdory mapped into each individual
application’s memory space. To support this first stage aystem would have to support tens
of thousands of simultaneogstattr()® requests for a single file. Even if this could be done in a
scalable manner when the application needs to actuallyheseliject from the shared library the
same tens of thousands of nodes would all come to a halt wddirthe shared library segment to
be loaded into each of the tens of thousands of individual amgspaces from a single file location.
Without mitigating these issues in some way this approaeérlyt will not scale to the node counts
we anticipate. Taking the approach of simply loading alfsbdibraries an applicatiomight need
into a memory based filesystem, at for instance boot time Jdveimply waste critical memory
resources. Since each application runs on its own dedicaigel the same inefficiencies described
in Section 2 apply. Additionally, even if any of these apmtoas were practical, the challenges
of providing a loader, a version of Glibc and Catamount shaystem libraries would require the
same effort as discussed in Section 2. If we ignore Catam@ewifec issues and focus on efficient
delivery and access to shared libraries from each nodes #rernumerous methods that might be
investigated.

Catamount uses a filesystem layer called libsysio[9],[7].e @pproach would be to enable
libsysio to support loading shared libraries to each nodegube same yod/pct protocol described
in Section 2. Libsysio could be modified to recognize file IQuests made for a specific path
and to use the yod/pct protocol to efficiently distribute fiirared library in its entirety to each
participating node. This approach shares in all of the pnolscans previously described in Section
2 related to the yod/pct protocol.

The libsysio layer could be modified to use other methodsrttight provide efficient shared
library distribution. Blue Gene/L[1], for example, uses axyr based filesystem configuration to
support dynamically linked executables. This method cbeldeproduced using the libsysio layer.
In our estimate, this method could provide equivalent efficies to the Blue Gene/L method but
not be as efficient as either the Levenhagen Method (Secjion ibsysio leveraging a yod/pct
type distribution protocol.

Providing support for dynamically linked executables, & ignore the added complications of
supporting the dlopen() API, could be achieved by pre-detang which shared libraries an appli-
cation requires and then efficiently distributing thoseretldibraries to a memory based filesystem

SFunction call to retrieve file attribute information.

14



on each node. This method closely resembles the methodrchps@ray Inc™to support dynam-
ically linked executables. The mechanisms to pre-detegmihich shared libraries are required
is available with either standard tools like fddr simple to achieve by examining the executable
(assuming it is an ELF executable). If we chose to pursuenkthiod in a Catamount environment
in addition to all of the previously discussed challengegp®rt for a memory based filesystem
would have to be added along with support for mm&pgad(§ and open@® which are currently
not supported for this activity. From the perspective ofpguing dunamically linked applica-
tions in the Catamount environment, filesystem approaches asl libsysio provide little if any
advantage compared to the Levenhagen method and sharafmosgll, of the challenges.

’Standard linker, part of Glibc

8Function call to map a file resident on storage other than mgmto main memory

9Function call to read information from region addressed leydescriptor
10Function call which establishes a file descriptor to a spetiiie.

15



4 Statifier Method

Statifier[6] is an open source tool that packages a dynalyitiaked executable into a self-
sufficient pseudo-static (statified) executable. The tegustatified executable contains the loader,
the original dynamically linked executable and all sharexhries required by that executable. The
initial reason this tool was attractive to investigate is tandard loader from Glibc could poten-
tially be used to build the statified executable. In additisymbol resolution and relocation is
done during the statification process which has the potaotediminate possible requirements for
mmap(), read(), and open(). The final statified executatdesiagle binary executable. This could
simplify the required changes to the yod/pct protocol topswpdynamically linked executables.
While the Levenhagen method proved to be a very scalable wdigtigbute the required shared
libraries to participating nodes, it is logical to assumet tistributing a single executable (default
Catamount method) would be equally or more efficient. Statfelld also potentially support the
dynamically linked executables that use the dlopen() APspgcifying potentially used shared
libraries with the LDPRELOAD!! environment variable.

To determine the feasibility of using Statifier to supporhdsnically linked executables we
contrived a test case using a simple hello world type progoeswided in the Catamount distri-
bution. The program was modified to reference a simple shéreaty of our construction. We
built the final executable by statically linking with the Cam@unt system and Glibc libraries and
dynamically linking with our simple shared library. We thstatified the resulting dynamically
linked executable to produce a statified executable. Ourdichblem was quickly evident. Cata-
mount assumes that executables have only twd. ®@RD12 segments. The statified executable in
all cases contain greater than two PDAD segments. Supporting more than two POAD seg-
ments would require similar but not quite as extensive mealifons to the yod/pct load protocol as
were described in Section 2. Properly placing all segmetseostatified executable might prove
more challenging and uncover additional complications.

Our efforts investigating the feasibility of Statifier wesbortened due to very helpful and
candid discussions with the tool’s author. Simply statked author felt that Statifier might present
support problems and was not appropriate for use in our gtaduenvironment. The author
considered Statifier a learning experience and had sinakthee=xperience gained in developing
Statifier to start a new project with similar goals. This newject, Ermine[2], was also considered
as a part of this project and will be discussed in Section Bcesone of the most critical factors in
evaluating each method was the ability to be supported in@yation environment, using Statifier
seemed a poor choice given the comments of the author.

Conceptually, Statifier satisfied many of our requirementse 3calability of distributing the
single statified executable would likely be sufficient for meeds. While not previously men-
tioned, the statified object is very large. This should nosbsorising since the final object con-
tains the loader, the original dynamically linked execidgand all referenced shared libraries. If
the LD_PRELOAD option is used to include libraries potentially refeced by dlopen() calls the

L Environment variable used to specify search paths to séarchferenced libraries
2In ELF, specifies a loadable segment

16



final executable would be even larger. Regardless, disimip single large executable would
likely be as, or more, efficient as distributing a number géots, which in total, equal the size of
the single statified object. Statifier uses the standardcGdider and shared libraries, therefore
would likely be a highly portable solution. Additionallyhie Statifier itself is not a standard it is
open-source and uses standard tools to accomplish its goals

17



5 Ermine Method

Ermine[2] was developed by the same author as Statifier. rierisia completely separate project
sharing no code with Statifier. Ermine, in contrast to Sttifs intended to be production quality
and supports additional features Statifier does not. Fopthmposes of this discussion Ermine
provides basically the same benefit, a single self-suffi@gacutable constructed from the loader,
a dynamically linked executable and all referenced shabedries. While the target audience for
both Statifier and Ermine is not the HPC environment, theatifes are attractive and share all of
the benefits outlined in Section 4. One additional featurErafine is worth mentioning; Ermine
has the ability to pack arbitrary data files into the final estable package. This feature could be
useful in the HPC environment to distribute input data filesgxample. In Section 4 we discussed
the necessity of modifying the yod/pct protocol to suppoeager than two PLOAD segments.
Ermine produces only two PLOAD segments and might be more easily supported by theegist
yod/pct protocol.

Ermine, however, does require support for mmap(), opend)raad() which would require
modification to the Catamount environment. Further analyisiBe practicality of Ermine became
academic due to the fact that Ermine is a closed source cocrahproduct. Our criteria of stan-
dards based implies open source availability. While a smiutke Ermine might be considered to
support dynamically linked executables on Catamount if flegtevere minimal (which it would
not be) requiring a closed source commercial product asopart open source LWK distribution,
for example Kitten[4], is unacceptable.

18



6 Future Light Weight Kernels

In 2005 work on a next generation LWK began. This new efforttdfi13[4] is an open-source
operating system designed specifically for HPC. Kitten besrbeavily from the LinuxV

code base, but in areas critical to scalability and perfoicedike memory management and task
scheduling, is written from scratch incorporating lesdeasned from a now long history of LWK
development at Sandia.

In Section 2 a number of dependencies specific to Catamoustventioned that complicated
support of dynamically linked executables. By design, Kithoids many of these complications.
Kitten provides partial Linux APl and ABI compatibility soahstandard compiler tool-chains and
system libraries (e.g., Glibc) can be used without modificatT he resulting ELF executables can
be run on either Linux or Kitten unchanged. It can be gengrtlited that the scalability chal-
lenges of supporting dynamically linked executables wittief are the result of features inherent
to shared library support rather than complications resyfirom trade-offs made in support of
scalability and performance.

The lessons learned from both the initial prototyping artdrlanalysis of the Levenhagen
method, along with our other analysis, have provided amairpath forward for scalable dynam-
ically linked executable support on Kitten. In short, sitice design of Kitten mitigates virtually
all of the challenges identified in Section 2, the scalgbibt the distribution protocol provides
an attractive template to be used in the design of a Kittendayprotocol. It is important to note
that additional unresolved challenges remain in suppprioplications that wish to leverage the
dlopen() API. Kitten, like Catamount, is a very flexible franaek that allows rapid prototyping. A
decision to support run-time shared library distributibrough the launch protocol does not pro-
hibit using a completely separate mechanism to supporilaliton of shared libraries requested
using the dlopen() API.

13The name Kitten continues the cat naming theme, but indicateew beginning.

19



7 Conclusion

In Section 2 we outlined a method designed to support dyraiyitinked executables that pro-
vides a scalable distribution of the shared libraries negliby the application. While many chal-
lenges specific to Catamount led us to conclude that the matidics required, production and
maintenance implications were prohibitive, the basic glegiroved worthy and is targeted for
use in ongoing LWK development (Section 6). Section 4 and Sigeadl interesting approaches
that had great potential in solving issues specific to Catatnaad for future LWK development.
Unfortunately, both of these specific tools failed to meet onmore of our critical requirements.
While our analysis determined these specific tools could eoided, the basic concept of distribut-
ing a self-sufficient executable package is attractive. fue-distribution of a single executable
has proved to be a very scalable approach and other thanzthebsith the Statifier and Ermine
method provide the equivalent of a single executable faridigion. Techniques like this may
warrant additional consideration. The Filesystem Methtakcribed in Section 3, also remains
a topic for future consideration. This method, in most ins&s, can be pursued independent of
operating system considerations. As a result, one of thacstte aspects of this method is the
inherent portability.

Table 1 provides a summary of the issues considered for easkted solution. The qualita-
tive ratings of poor, fair, good and very good are in relatoeach other, rather than as a general
statement of textitgoodness.

Table 1. Matrix of key issues for support of dynamically linked
executables versus potential solution methods in capability class

HPC systems.
Issues/Method Levenhagen In-Memory | Statifier Ermine
Filesystem

Scalability Very Good | Good Very Good | Very Good

Portability Poor Fair Good Very Good

Standards Based | Poor Fair Good Very Good

Maintainability Requires | Requires | Declared | Source
Local Enhanced | Insufficient | Code Not
Support libsysio Available

Supports dlopen() | Poor Yes Yes Yes

Larger Memory| Yes Yes Yes Yes

Requirements

(Relative to static)

Custom glibc (Cata: Yes Yes Maybe No

mount)

Custom mmap() Yes Yes No Yes

(Catamount)

While our analysis determined that supporting dynamicatigdd executables, specifically in

20



the Catamount production environment, required an unaabkptevel of effort and subsequent
maintenance, the potential convenience to the user contyrafrthis feature has made it a priority
for future LWK implementations.

21



References

[1] Blue-GenelL. Electronic reference, Lawrence Livermordlational Labs,
https://asc.linl.gov/computingesources/bluegenel.

[2] Ermine. Electronic reference, Open Source, http://wwagicermine.com.
[3] Gnu c library. Electronic reference, Open Source, Hitpvw.gnu.org/software/libc/.
[4] Kitten. Electronic reference, Open Source, http:Msafe.sandia.gov/trac/kitten.

[5] Redstorm. Electronic reference, Sandia National L allooies,
http://www.cs.sandia.gov/platforms/RedStorm.html.

[6] Statifier. Electronic reference, Open Source, httgatifier.sourceforge.net.
[7] sysio. Electronic reference, Open Source, http://msonrceforge.net/libsysio.
[8] uclibc. Electronic reference, Open Source, http://waalibc.org.

[9] Suzanne M. Kelly and Ron Brightwell. Software Archite@wf the Light Weight Kernel,
Catamount . Irproceedings of the Cray User Group (CUG), 2005.

22



DISTRIBUTION:

P R R R RRP R PR

MS 1319
MS 1319
MS 1319
MS 1319
MS 1319
MS 1319
MS 1319
MS 0899

James H. Laros Ill, 01422
Suzanne M. Kelly, 01423

John VanDyke, 01423

Kevin Pedretti, 1423

Micheal Levenhagen, 1423

Ronald Brightwell, 1423

James Ang, 1422

Technical Library, 9536 (electronic)

23



24



v1.32



@ Sandia National Laboratories



